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Abstract
In this work we use a diagrammatic method for integration over the unitary
group to obtain a quantum correction to the average shot-noise power of
a chaotic cavity with non-ideal contacts. We present maximally crossed
diagrams representing the physical modes of the system responsible for the
dominant quantum correction. We demonstrate with explicit calculations that
the suppression–amplification effect reported in Ramos et al (2008 Phys. Rev.
B 78 235305) occurs both for systems in the presence of time-reversal (TR)
and spin-rotation (SR) symmetries and for systems with broken SR symmetry
but in the presence of TR symmetry.

PACS numbers: 73.23.−b, 73.21.La, 05.45.Mt

1. Introduction

The study of statistical features of transport observables in quantum electron devices has
always been of great theoretical and experimental interest in the community of mesoscopic
physics [1–5]. The main transport observables of mesoscopic structures such as quantum
dots and quantum wires are the conductance and the shot-noise power [6, 7]. Both quantities
can exhibit detectable quantum interference effects which are caused by multiple coherent
scattering in the system. One of the most important types of quantum interference effect
is weak localization (WL), which corresponds to a suppression of the average conductance
of systems in the presence of both time-reversal (TR) and spin-rotation (SR) symmetries.
Present technology makes it possible to have control over many experimental parameters
such as temperature, magnetic field and barriers’ transparencies [8, 9] so that measurements
of the WL correction are a great source of information about the underlying mechanisms
of the quantum coherent dynamics in the system. The best studied type of WL correction
corresponds to a suppression of the average conductance and represents an important probe on
quantum mechanisms that depends on fundamental time scales [10–12], such as the Ehrenfest
time τE , the dwell time τdw and the ergodic time τerg.

Recent theoretical efforts have been directed to the understanding of the WL correction to
the average shot-noise power of quantum dots [13–15]. Braun et al [13] used a semiclassical
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trajectory approach to describe the orthogonal-unitary crossover, i.e. the gradual breaking of
TR symmetry by an applied magnetic field. Employing random-matrix theory [16], Savin
and Sommers [14] calculated analytically exact expressions for the average shot-noise power.
Béri and Cserti [15] extended the results of [13] to a very general class of crossover that
includes simultaneously spin–orbit coupling and an external magnetic field. We note that the
above results are restricted to chaotic cavities with ideal contacts. When barriers of arbitrary
transparencies are present, which is the case of non-ideal contacts, we showed in [17] that
new surprising effects can emerge, such as the suppression–amplification transition of the
average shot-noise power, caused by gradually changing the transparencies of the barriers.
The present work is an extension of [17]. We provide a detailed account of the very subtle
selection of maximally crossed diagrams that contribute to the weak-localization correction to
the shot-noise power, which are essential to the final results but were only briefly discussed in
[17]. We also indicate potential applications of the new set of maximally crossed diagrams in
more general situations.

Random-matrix theory (RMT) describes very accurately the universal statistical properties
of quantum transport observables of open chaotic cavities. The universal description is valid
provided τdw � max(τE, τerg). In the case of ideal contacts it amounts to a description in
terms of random scattering matrices from the standard Wigner–Dyson ensembles [3]. These
ensembles are classified according to certain fundamental symmetries left unbroken by the
chaotic dynamics and can be labelled by Dyson’s integer index β [18]. More specifically,
the circular orthogonal ensemble (COE) is applicable to systems in the presence of both TR
and SR symmetries, β = 1; the circular unitary ensemble (CUE) is valid for systems in the
absence of both TR and SR symmetries, β = 2; and the circular symplectic ensemble (CSE)
can be used in systems with broken SR symmetry but in the presence of TR symmetry, β = 4.
The basic mathematical object of the theory, the scattering matrix, can always be written in
2 × 2 block form as

S =
(

r t

t ′ r ′

)
, (1)

where t, t ′ and r, r ′ are, respectively, transmission and reflection matrices. Using the Landauer
scattering approach to quantum transport [1], we can relate certain moments of the transmission
matrix to transport observables. For instance, the conductance is simply given by

g1 = Tr(t t †). (2)

Introducing the second moment

g2 = Tr[(t t †)2], (3)

we can express the shot-noise power combining (2) with (3) as follows:

p = g1 − g2 = Tr[t t †(1 − t t †)]. (4)

In order to obtain statistical properties of transport observables of a chaotic cavity with
arbitrary barriers, we must use a distribution of scattering matrices that is different from the
circular ensembles. Such distribution can be obtained from a maximum information entropy
principle and is known as the Poisson kernel [19]. It reads

P(S) ∝ |det(1 − S̄†S)|−(βN+2−β), (5)

where β ∈ {1, 2, 4} is the parameter identifying the distinct symmetry classes. The integer
parameter N is the number of open scattering channels in the metallic leads that connect the
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chaotic cavity to electron reservoirs and S̄ is a sub-unitary matrix representing the average
S-matrix and can without loss of generality be written as

S̄ =
(

r1 0
0 r2

)
, (6)

where r1 and r2 are reflection matrices of barriers 1 and 2, respectively. Note, in particular,
that if we set S̄ = 0, we recover the Wigner–Dyson ensembles, since they represent uniform
distributions.

The diagrammatic method used in this work was designed in [20] as a method for
integration over the unitary group. It applies straightforwardly to circular ensembles and with
simple modifications it can also be used for calculating averages over the Poisson kernel.
It also gives a simple diagrammatic representation of the diffuson (ladder diagrams) and
cooperon (maximally crossed diagrams) modes of localization theory [4, 21] in the form that
it applies to open quantum dots. We believe the results of this work to be particularly relevant
to further development of the diagrammatic method as a powerful tool in mesoscopic physics.
The paper is organized as follows. In section 2, we provide a simple application of the
diagrammatic method by deriving the exact average shot-noise power of a chaotic cavity with
ideals contacts. In section 3, we present in detail the perturbative diagrammatic calculation of
the average shot-noise power of a chaotic cavity with barriers giving special attention to the
dominant quantum correction. A summary and conclusions are presented in section 4.

2. Average shot-noise power of a chaotic cavity with ideal contacts

In this section, we derive an exact expression for the average shot-noise power of a chaotic
cavity with two ideal contacts via the diagrammatic method. From (4) we see that the average
shot-noise power can be obtained by subtracting the average second moment, equation (3),
from the average conductance, equation (2). The average conductance was obtained from the
diagrammatic technique by Brouwer and Beenakker [20]. It reads

〈g1〉 = N1N2

N − 1 + 2
β

, (7)

where β ∈ {1, 2, 4} is Dyson’s symmetry index, N1 and N2 are the numbers of open scattering
channels in leads 1 and 2, respectively, so that N = N1 + N2 is the total number of open
scattering channels in the system.

Thus, it remains to calculate the average second moment. Following [20] we rewrite the
second moment as follows:

g2 = Tr[(C1SC2S
†)2]. (8)

The S-matrix in this formula can be represented as in (1) and describes the chaotic scattering
inside the dot. It is distributed according to the relevant circular ensemble: COE for β = 1,
CUE for β = 2 and CSE for β = 4. The matrices C1,2 are projection matrices defined by

C1 =
(

1N1 0
0 0

)
, C2 =

(
0 0
0 1N2

)
, (9)

where 1Nj
is the Nj × Nj unity matrix. The following relation hold C1C2 = 0 and C1 +

C2 = 1N .
We are now in a position to apply the diagrammatic method for calculating the average

of (8). The diagrammatic rules consist in accounting for all possible contractions of indices
of scattering matrices. Black and white dots represent that the indices and contractions are
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Figure 1. Basic objects of the diagrammatic rules. In decreasing order, a random element of the
scattering matrix and its complex conjugate, a projector in channel space and a Kronecker delta
element for contraction of indices.

(a)

(b)

Figure 2. Diagrammatic representation of (a) the second moment, equation (8), and (b) the
ensemble average of the second moment, equation (10). Note that in the language of cycles
introduced in [20], the first two diagrams of (b) have two U-cycles and three T-cycles while the
last two of them have one U-cycle and four and two T-cycles, respectively.

indicated as lines connecting the dots. A summary of the basic rules is given below.

• Draw the basic elements according to figure 1.
• Connect each possible pairing of black dots of S and S∗ matrices and do the same for the

white dots.
• Denote a U-cycle any closed circuit in the diagram with an alternating sequence of thick

dotted lines and thin lines. U cycles have weight given by VP, where P characterizes the
permutation of indices.

• Denote a T-cycle any closed circuit with an alternating sequence of directed thick solid
line and thin lines. T cycles correspond to the trace of the matrices in the circuit.

For a full description of the diagrammatic method for averaging over the Dyson ensembles
CUE, COE and CSE, see [20]. Here we shall consider in detail only the CUE case, although
the final expressions are extended to the other ensembles via the insertion of Dyson’s index β.

The first step is to represent g2 diagrammatically as shown in figure 2(a), in which the
scattering matrix is represented by thick dotted lines, • · · · ◦, and the projection matrices C1,2

are represented by directed thick solid lines, see figure 1. The second step is to perform the
ensemble average directly on the diagrammatic representation by connecting, in the case of
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CUE, the dots of the same colour by thin lines in all topologically distinct ways. We find four
possible diagrams, see figure 2(b). Similar diagrams have been presented in the perturbative
calculation of [15]. Applying the diagrammatic rules to the diagrams of figure 2(b), we obtain

〈g2〉 = V1,1[(Tr C1)
2 Tr(C2)

2 + Tr(C1)
2(Tr C2)

2]

+ V2[(Tr C1)
2(Tr C2)

2 + Tr(C1)
2 Tr(C2)

2], (10)

where the weights are given by V1,1 = (N2 − 1)−1 and V2 = −(N(N2 − 1))−1. For more
details on how to calculate these weights recursively, see [20, 22]. After some algebra we
obtain from (10) the following simple exact expression:

〈g2〉 = N1N2
(
N2

1 + N1N2 + N2
2 − 1

)
(N − 1)N(N + 1)

. (11)

At this point we may introduce the index β and rewrite this expression in a way that is valid
for all symmetry classes, as can be obtained by applying the diagrammatic rules for ensemble
averaging over the COE and CSE ensembles. We find

〈g2〉 =
N1N2

(
N2

1 + N1N2 + N2
2 − 2N + 1 + 4N−6

β
+ 4

β2

)
(
N − 2 + 2

β

)(
N − 1 + 2

β

)(
N − 1 + 4

β

) . (12)

Note that if we set β = 2 we recover (11), as expected.
Inserting (12) and (7) into 〈p〉 = 〈g1〉 − 〈g2〉, we obtain the following exact expression

for the average shot-noise power:

〈p〉 =
N1N2

(
N1 − 1 + 2

β

)(
N2 − 1 + 2

β

)
(
N − 2 + 2

β

)(
N − 1 + 2

β

)(
N − 1 + 4

β

) , (13)

in complete agreement with [14], for arbitrary N1 and N2, and with [23], for N1 = N2, where
the calculations were performed with non-diagrammatic methods. It is instructive to obtain
from (12) and (13) the first two terms in the perturbative semiclassical expansion, which
is valid provided N1, N2 � 1. We obtain the following expression for the average second
moment:

〈g2〉 = N1N2
(
N2

1 + N1N2 + N2
2

)
(N1 + N2)3

+ 2

(
1 − 2

β

)
N1N2

(
N2

1 + N2
2

)
(N1 + N2)4

+ O(N−1), (14)

and for the average shot-noise power we get

〈p〉 = N2
1 N2

2

(N1 + N2)3
−

(
1 − 2

β

)
N1N2 (N1 − N2)

2

(N1 + N2)
4 + O(N−1). (15)

Equation (15) is well known in the literature, see e.g. [2]. The second term in the expansion
is the dominant quantum correction to the semiclassical limit. Note that if we set β = 2 in
(15) the quantum correction vanishes, as expected from the suppression quantum interference
caused by breaking the TR symmetry through the application of an external magnetic field.
However, for β = 1 (β = 4), the quantum interference correction amplifies (suppresses) the
dominant semiclassical value of the average shot-noise power and it vanishes if N1 = N2.

The calculation of the average shot-noise power of a chaotic cavity with two ideal contacts
is a very simple application of the diagrammatic technique which yields exact results. In spite
of the simplicity, the four diagrams of figure 2(b) are still a useful guide in setting up the much
more complicated calculation of the perturbative expansion of the average shot-noise power
of a chaotic cavity with two barriers, which is the subject of the next section.
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3. Average shot-noise power of a chaotic cavity with barriers

In this section, we set up a perturbative diagrammatic procedure to calculate the average
shot-noise power of a chaotic cavity with two barriers of arbitrary transparencies, with
special attention to the leading quantum interference correction. In the presence of barriers,
the scattering matrix of the chaotic cavity is distributed according to the Poisson kernel,
equation (5). The central idea of the scheme is to map the ensemble average over the Poisson
kernel onto an effective problem with a random matrix belonging to one of the circular
ensembles, so that the diagrammatic technique used in the previous section applies. Following
[20] this is achieved by separating the average and the fluctuating part of the scattering matrix
as follows, S = S̄ + δS, where S̄ is the sub-unitary matrix shown in (6). The fluctuating
part is parametrized in the following form: δS = L(1 − UR)−1UT , where the matrix U is a
random matrix distributed according to one of the circular ensembles. The matrices L, T and
R describe transmission and reflection coefficients of the barriers and are related to S̄ via the
condition that

�̂ =
(

S̄ L

T R

)
(16)

be unitary. The most convenient choices for the matrices T ,L and R are

T =
(

(i
√

�1)1N1 0

0 (i
√

�2)1N2

)
= L (17)

and

R =
(

(
√

1 − �1)1N1 0

0 (
√

1 − �2)1N2

)
= S̄, (18)

where �1 and �2 represent the transmission coefficients of each channel in barriers 1 and 2,
respectively. Using the decomposition S = S̄ +δS and simple statistical properties of δS, such
as its vanishing average, we may write (8) as

〈g2〉 = 〈Tr[(C1δSC2δS
†)2]〉. (19)

Expanding the denominator in the parametrization of δS and inserting the result in (19) we
obtain the series

〈g2〉 =
∞∑

k,l,m,n�1

〈fk,l,m,n〉, (20)

where

fk,l,m,n = Tr[C1L(UR)k−1UT C2T
†U †(R†U †)l−1L†C1L(UR)m−1UT C2T

†U †(R†U †)n−1L†].

(21)

It follows from a simple property of averages over the unitary group that 〈fk,l,m,n〉 �= 0 if
and only if k + m = l + n. The remaining non-trivial task is to calculate perturbatively the
non-vanishing part of 〈fk,l,m,n〉. The leading term, which yields the dominant semiclassical
value, is calculated in the next section.

3.1. Dominant semiclassical term

Since the dominant semiclassical term is independent of the symmetry index β, we may
perform the ensemble average using the simpler diagrammatic rules of the CUE ensemble.

6



J. Phys. A: Math. Theor. 43 (2010) 075101 A L R Barbosa et al

Figure 3. Diagrammatic representation of the matrices FL (top), equation (22), and FR (bottom),
equation (23). They are an infinite series of ladder diagrams, see [20].

Table 1. Algebraic expressions corresponding to the diagrams of figure 4.

1 W2(Tr FL)2(Tr FR)2

2 W 4
1 (Tr FL)2(Tr RR†RR†)(Tr FR)2

3 2W 3
1 (Tr FL)2(Tr T C2T

†RR†)(Tr FR)

4 2W 3
1 (Tr FL)

(
TrL†C1LR†R

)
(Tr FR)2

5 W 2
1 Tr(L†C1L)2(Tr FR)2

6 W 2
1 (Tr FL)2 Tr(T C2T

†)2

It follows that the leading contribution is given by the insertion of ladder diagrams in the
first three diagrams of figure 2(b). In order to systematize the procedure it is convenient to
introduce left and right insertions of ladder diagrams through the matrices FL and FR defined
by

FL = L†C1L +
∞∑

n=1

Wn
1 Tr(L†C1L)(Tr(R†R))n−1R†R = L†C1L +

Tr(L†C1L)

N − Tr(R†R)
R†R (22)

and

FR = T C2T
† +

∞∑
n=1

Wn
1 RR†(Tr(R†R))n−1 Tr(T C2T

†) = T C2T
† + RR† Tr(T C2T

†)

N − Tr(R†R)
,

(23)

in which we used the asymptotic value of the weight V1 = W1 ≈ N−1 associated with short
U-cycles. These matrices are represented diagrammatically in figure 3.

We identified six topologically distinct diagrams that are shown in figure 4. For
convenience we drew each diagram of figure 4 with four arms irrespective of whether
there is or not an insertion of ladder diagrams. The first diagram of figure 2(b) generates
diagrams 2, 3 and 5 of figure 4, while the second diagram generates diagrams 4 and 6.
The third diagram of figure 2(b) generates diagram 1 of figure 4 and the last one does not
generate any contribution in the semiclassical limit. These six diagrams exhibit insertions of
ladder diagrams and represent the information contained in the discrete diffuson modes of the
system [4].

In table 1 we show the algebraic expressions with the corresponding weights associated
with each of the diagrams of figure 4. Note that the diagram of figure 4(1) has a long U-cycle
with weight V2 = W2 while the others have short U-cycles with weight W 1. Adding the
equations of table 1, we get

〈g2〉 = W2(Tr FL)2(Tr FR)2 + W 4
1 (Tr FL)2(Tr RR†RR†)(Tr FR)2

+ 2W 3
1 (Tr FL)2(Tr T C2T

†RR†)(Tr FR) + 2W 3
1 (Tr FL)(TrL†C1LR†R)(Tr FR)2

+ W 2
1 Tr(L†C1L)2(Tr FR)2 + W 2

1 (Tr FL)2 Tr(T C2T
†)2. (24)

7
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Figure 4. The six sets of topologically distinct diagrams that contribute to the dominant
semiclassical term of the average shot-noise power.

Inserting the semiclassical values W1 ≈ N−1,W2 ≈ −N−3, (22), (23) and the defining
expressions of the matrices C1, C2, T , R and L into (24), we obtain the compact result

〈g2〉 = g4
1 ḡ2 + 2g3

1 ḡ
2
1 + 2g2

1 ḡ
3
1 + g2ḡ

4
1

(g1 + ḡ1)
4 + O(N−1), (25)

where gp = ∑N1
i=1(�i)

p and ḡp = ∑N
i=N1+1(�i)

p.
A similar calculation for 〈g1〉 can be found in [20] which yields

〈g1〉 = g1ḡ1

g1 + ḡ1
+ O(N−1). (26)

Inserting (25) and (26) into 〈p〉 = 〈g1〉 − 〈g2〉 we obtain the dominant semiclassical value of
the average shot-noise power

〈p〉 = g4
1 ḡ1 + g3

1 ḡ
2
1 − g4

1 ḡ2 − ḡ4
1g2 + g2

1 ḡ
3
1 + g1ḡ

4
1

(g1 + ḡ1)4
+ O(N−1), (27)

in agreement with Whitney’s result obtained from the semiclassical trajectory approach [10].
Equation (27) reproduces the results of the cascade approach [24] if we set gp = N1(�1)

p

and ḡp = N2(�2)
p, and is in agreement with semiclassical calculations via the generating

function of full counting statistics [25, 26] if we set N1 = N2 = N/2, gp = N(�1)
p/2 and

ḡp = N(�2)
p/2.

3.2. Dominant quantum correction

When the matrix U in (20) is distributed according to the circular orthogonal ensemble, the
average second moment 〈g2〉, shown in equation (25), has a quantum correction of O(1)

8
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Figure 5. Diagrammatic representation of the functions fTT (top), equation (32), and fUU (bottom),
equation (33). They are an infinite series of maximally crossed diagrams, known as cooperons
[20].

Figure 6. A series of maximally crossed diagrams representing the functions fTU (top) and fUT

(bottom), equation (34), see [20].

which we denote as 〈δg2〉. Physically, it emerges from constructive quantum interference
between pairs of time-reversed electron paths. We separate this quantum correction into two
contributions,

〈δg2〉 = 〈δg2,1〉 + 〈δg2,2〉. (28)

The first term, 〈δg2,1〉, comes from the next order correction of the weights of the short U-
cycles [20], W1 ≈ N−1(1 − N−1). This factor affects significantly the matrices FL and FR

since after inserting Wn
1 ≈ N−n−nN−n−1 in equations (22) and (23) we obtain the corrections

δFL = −
∞∑

n=1

nN−n−1 Tr(L†C1L)(Tr(R†R))n−1R†R = − Tr(L†C1L)

(N − Tr(R†R))2
R†R, (29)

and

δFR = −
∞∑

n=1

nN−n−1(Tr(R†R))n−1Tr(T C2T
†)RR† = − Tr(T C2T

†)

(N − Tr(R†R))2
RR†. (30)

Inserting FL + δFL and FR + δFR in the places of FL and FR of (24), with δFL and δFR

given by (29) and (30), respectively, we obtain

〈δg2,1〉 = −2
g4

1 ḡ2 + 2g3
1 ḡ

2
1 − g3

1 ḡ1ḡ2 − g1g2ḡ
3
1 + 2g2

1 ḡ
3
1 + g2ḡ

4
1

(g1 + ḡ1)5
+ O(N−1). (31)

The second correction to the second moment, 〈δg2,2〉, comes from diagrams of O(1).
This correction has pure quantum characteristics and can be obtained via insertions of series
of maximally crossed diagrams representing the discrete cooperon modes of the system. They
can also be drawn as ladder diagrams [4], as shown in figures 5 and 6, and they are defined by
the following equations:

fT T =
∞∑

n=0

N−n(Tr(R†R))n+1 = N Tr(R†R)

N − Tr(R†R)
, (32)

fUU =
∞∑

n=0

N−n−1(Tr(R†R))n = 1

N − Tr(R†R)
(33)

9
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(a)

(c)

(b)

Figure 7. The first set of maximally crossed diagrams, which contribute to quantum correction
of the shot-noise power. The diagrams are obtained by crossing the arms of the diagram of
figure 4(1).

(a) (b)

Figure 8. The second set of maximally crossed diagrams, which contribute to quantum correction
of the shot-noise power. The diagrams are obtained by crossing the arms of the diagram of
figure 4(2).

and

fT U = fUT =
∞∑

n=0

N−n(Tr(R†R))n = N

N − Tr(R†R)
. (34)

We can systematically generate diagrams of O(1) by crossing the arms of the six diagrams
of figure 4 inserting the diagrams of figures 5 and 6 in all topologically distinct ways. We
found one set of diagrams with six elements, three sets with seven elements and two sets with
three elements. They are shown in figures 7–9. The corresponding algebraic expressions
are shown in table 2. The procedure is straightforward and is described in the following.
We start by defining seven basic types of insertions, H1,H2,H3,H4,K1,K2 and K3, whose
diagrams and corresponding algebraic expressions are shown in the appendix. The diagrams
of figure 7 are obtained by inserting K1,K2 and K3 into the diagram of figure 4(1). The
diagrams of figure 8 are obtained by inserting H1 and H2 into the diagram of figure 4(2).
Finally, the diagrams of figure 9 are obtained by inserting H3 and H4 into the diagrams of
figure 4(3)–(6).

10
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(a) (b)

(c) (d )

Figure 9. The third set of maximally crossed diagrams, which contribute to quantum correction
of the shot-noise power. The diagrams are obtained by crossing the arms of the diagram of
figure 4(3)–(6).

Table 2. Algebraic expressions for the diagrams of figures 7–9.

1 2 3

a 4W2K1 Tr(FL)Tr(FR) 4 Tr(H1H) 2W 2
1 Tr(H3RR†)Tr(FL)Tr(FR)

b 2W3K2 Tr(FL)Tr(FR) 2 Tr(H2H) 2W 2
1 Tr(H4R

†R)Tr(FL)Tr(FR)

c 2W2K3 Tr(FL)Tr(FR) 2W1 Tr(H3T C2T
†)Tr(FL)

d 2W1 Tr(H4L
†C1L)Tr(FR)

With the three sets of algebraic expressions shown in table 2, we obtain the following
expression for 〈δg2,2〉:
〈δg2,2〉 = 4W2K1 Tr(FL)Tr(FR) + 2W3K2 Tr(FL)Tr(FR) + 2W2K3 Tr(FL)Tr(FR)

+ 4Tr(H1H) + 2Tr(H2H) + 2W 2
1 Tr(H3RR†)Tr(FL)Tr(FR)

+ 2W 2
1 Tr(H4R

†R)Tr(FL)Tr(FR) + 2W1 Tr(H3T C2T
†)Tr(FL)

+ 2W1 Tr(H4L
†C1L)Tr(FR). (35)

Inserting the algebraic expressions for H1,H2,H3,H4,K1,K2 and K3 shown in the appendix,
equations (32)–(34) and the asymptotic value for the weights W1 ≈ N−1,W2 ≈ −N−3 and
W3 ≈ 2N−5 in (35), we obtain

〈δg2,2〉 = −2(g1 + ḡ1)
−6

(−g2
1 ḡ

3
1 ḡ2 + 4g3

1 ḡ
2
1 ḡ2 + 4g2

1 ḡ
3
1g2 + 3g4

1 ḡ1ḡ2 − g3
1 ḡ

2
1g2 − 2g2ḡ

5
1

+ 2g5
1 ḡ3 + 2ḡ5

1g3 − 4g4
1 ḡ

2
2 + 2g1ḡ

3
1g2ḡ2 + 2g3

1 ḡ1g2ḡ2 − 4g2
1 ḡ

2
1g2ḡ2 − 2g5

1 ḡ2 − 4g2
2 ḡ

4
1

+ 3g1ḡ
4
1g2 + 2ḡ4

1g3g1 + 2g4
1 ḡ3ḡ1 − 2g4

1 ḡ
2
1 − 4g3

1 ḡ
3
1 − 2g2

1 ḡ
4
1

)
+ O(N−1). (36)

Inserting (31) and (36) into (28) we obtain the dominant quantum correction to the average
second moment

〈δg2〉 = 2(g1 + ḡ1)
−6

(−2g3
1 ḡ1g2ḡ2 + 4g2

1 ḡ
2
1g2ḡ2 − 2g1ḡ

3
1 ḡ2g2 + g2ḡ

5
1 − 2g5

1 ḡ3

− 2ḡ5
1g3 + 4g4

1 ḡ
2
2 + g5

1 ḡ2 + 4g2
2 ḡ

4
1 + g2

1 ḡ
3
1 ḡ2 − 3g3

1 ḡ
2
1 ḡ2 − 3g2

1 ḡ
3
1g2 − 3g4

1 ḡ1ḡ2

+ g3
1 ḡ

2
1g2 − 3g1ḡ

4
1g2 − 2ḡ4

1g3g1 − 2g4
1 ḡ3ḡ1

)
+ O(N−1). (37)

11
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Let us now combine (25) with (37) and insert the proper dependence on Dyson’s symmetry
index β, via the factor

(
2
β

− 1
)
, to obtain the first two terms in the semiclassical expansion of

the average second moment

〈g2〉 = (g1 + ḡ1)
−4

(
g4

1 ḡ2 + 2g3
1 ḡ

2
1 + 2g2

1 ḡ
3
1 + g2ḡ

4
1

)
+ 2

(
2

β
− 1

)
(g1 + ḡ1)

−6
(−2g3

1 ḡ1g2ḡ2

+ 4g2
1 ḡ

2
1g2ḡ2 − 2g1ḡ

3
1 ḡ2g2 + g2ḡ

5
1 − 2g5

1 ḡ3 − 2ḡ5
1g3 + 4g4

1 ḡ
2
2 + g5

1 ḡ2

+ 4g2
2 ḡ

4
1 + g2

1 ḡ
3
1 ḡ2 − 3g3

1 ḡ
2
1 ḡ2 − 3g2

1 ḡ
3
1g2 − 3g4

1 ḡ1ḡ2

+ g3
1 ḡ

2
1g2 − 3g1ḡ

4
1g2 − 2ḡ4

1g3g1 − 2g4
1 ḡ3ḡ1

)
+ O(N−1). (38)

The extension to β = 4 of equation (38) can be made by using the diagrammatic rules for
ensemble averaging over the CSE, see [20]. Note that if we set �i = 1 in (38), it simplifies to
(14), as expected.

The corresponding analysis for the average conductance was presented in [20] and yields

〈g1〉 = g1ḡ1

g1 + ḡ1
+

(
1 − 2

β

)
g2ḡ

2
1 + g2

1 ḡ2

(g1 + ḡ1)3
+ O(N−1). (39)

Substituting (38) and (39) into 〈p〉 = 〈g1〉 − 〈g2〉, we obtain the semiclassical expansion for
the average shot-noise power with the dominant quantum correction:

〈p〉 = (g1 + ḡ1)
−4

(
g4

1 ḡ1 + g3
1 ḡ

2
1 − g4

1 ḡ2 − ḡ4
1g2 + g2

1 ḡ
3
1 + g1ḡ

4
1

)
+

(
2

β
− 1

)
(g1 + ḡ1)

−6

× (−3g2ḡ
5
1 + 4g5

1 ḡ3 + 4ḡ5
1g3 − 8g4

1 ḡ
2
2 − 3g5

1 ḡ2 − 8g2
2 ḡ

4
1 + 4g3

1 ḡ1g2ḡ2

+ 4g1ḡ
3
1 ḡ2g2 − 8g2

1 ḡ
2
1g2ḡ2 − 3g2

1 ḡ
3
1 ḡ2 + 3g3

1 ḡ
2
1 ḡ2 + 3g2

1 ḡ
3
1g2 + 3g4

1 ḡ1ḡ2

− 3g3
1 ḡ

2
1g2 + 3g1ḡ

4
1g2 + 4ḡ4

1g3g1 + 4g4
1 ḡ3ḡ1

)
+ O(N−1). (40)

Equation (40) is the main result of this paper and is valid for β ∈ {1, 2, 4}. We recover the
ideal contact case, equation (15), by setting �i = 1. If we make gp = N1�

p

1 and ḡp = N2�
p

2
in (40), it simplifies to

〈p〉 = G1G2
(
G1G2(G1 + G2) + G3

1(1 − �2) + G3
2(1 − �1)

)
(G1 + G2)4

+

(
2

β
− 1

)
G1G2(G1 − G2)(G1�2 + G2�1)

(
3
(
G2

2 − G2
1

)
+ 4

(
G2

1�2 − G2
2�1

))
(G1 + G2)6

, (41)

where Gi = Ni�i with i = 1, 2. This equation was obtained in [17] using both quantum
circuit theory [25, 27] and diagrammatic perturbation theory.

The dominant quantum correction to the average shot noise power, equation (41), describes
a subtle suppression/amplification transition on the dominant semiclassical value of the shot-
noise power even without changing the parameter β that identifies the distinct symmetry
classes. This effect can be modulated by controlling the barriers’ transparencies and the
number of channels in the leads. In figure 10, we show the effect comparing all symmetry
classes CUE, COE and CSE. In the left panel, we show the transition as a function of the
parameter a = G2/G1, whilst in the right panel we vary the barriers’ transparencies in the case
of symmetric contacts. Note in the latter case that the transition always occurs at � = 3/4,
independent of the parameters a and β. Another noteworthy feature of 〈δp〉 is its linear
suppression in the opaque limit. This limit was defined in [10] as �i → 0 with Gi fixed.
A similar effect for the weak-localization correction to the conductance has a nice physical
explanation in the semiclassical approach [10]. In spite of being a small effect, the behavior

12
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β
β Γ

β Γ

β Γ

β Γ

δ δ

Γ

β=2
β
β
β
β

Figure 10. (Left) The dominant quantum correction to the average shot noise power, 〈δp〉, as
a function of the parameter a = G2/G1 on the interval 0 � a � 1 with fixed �1 = 0.3.
(Right) The dominant quantum correction as a function of the the barriers’ transparencies in the
symmetric case, where �1 = �2 = �. Note that all suppression–amplification transitions occur
at � = 3/4.

of 〈δp〉 is unique in the sense that it is the largest observable effect that is a direct consequence
of the combination of both temporal and spatial quantum coherences in the system.

4. Summary and conclusion

In this work, we presented a detailed quantitative analysis of the quantum correction to the
average shot-noise power of a chaotic cavity with non-ideal contacts via the diagrammatic
method for integration over the unitary group. Our main result is valid for all symmetry classes
of the Wigner–Dyson’s ensembles. We believe that this work provides a useful contribution
to the development of the diagrammatic method by presenting a new set of maximally crossed
diagrams that can be used for calculating the weak-localization correction of the average shot-
noise power under more general conditions, such as those found in systems in the presence of
symmetry breaking fields [15] or with ferromagnetic and/or superconducting reservoirs.
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Appendix. Auxiliary diagrams

We present here the auxiliary diagrams, figures A1 and A2, and the corresponding algebraic
expressions that are used to generate all maximally crossed diagrams:

H = W 2
1 Tr(FL)Tr(FR)R†RR† + W1 Tr(FL)R†T C2T

† + W1 Tr(FR)L†C1LR† (A.1)

H1 = Tr
(
FLFT

R

)
f 2

UUR + W2Tr(FL)Tr(FR)f 2
T UR (A.2)

13
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Figure A1. First set of auxiliary diagrams.

H2 = W1 Tr(FR)fUUFT
L R + W1 Tr(FL)fUURFT

R + W1 Tr
(
RR†FT

L

)
f 2

UU Tr(FR)R

+ W1 Tr(FL)f 2
UU Tr

(
R†RFT

R

)
R + W1W2Tr(FL)fT T fT U Tr(FR)R (A.3)

+ W1W2Tr(FL)fT T fT U Tr(FR)R (A.4)

H3 = fUUFT
L T C2T

† + Tr
(
RR†FT

L

)
f 2

UUT C2T
† + W2Tr(FL)fT T fT UT C2T

† (A.5)

H4 = L†C1LFT
R fUU + Tr

(
R†RFT

R

)
f 2

UUL†C1L + W2Tr(FR)fT T fT UL†C1L (A.6)

K1 = W2 Tr(FL)Tr(FR)f 2
T T + Tr

(
FLFT

R

)
f 2

UT (A.7)

K2 = Tr(FL)Tr(FR)fT T + Tr(FL)Tr(FR)fT T (A.8)

K3 = Tr
(
RR†FT

L

)
Tr(FR)fUUfUT Tr(FR) + Tr (FL) Tr

(
R†RFT

R

)
fUUfUT Tr(FR)

+W2Tr(FL)Tr(FR)f 2
T T + W2Tr(FL)Tr(FR)f 2

T T .
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Figure A2. Second set of auxiliary diagrams.
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